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1 Introduction

This final report summarizes work done on the project “Array Processing for Discrete
and Distributed Sources,” under contract # N00014-01-1-0075 for the Office of Naval
Research, during the period 10/01/00 - 9/30/04.

Array processing techniques are primarily designed for point sources, i.e. spatially
discrete sources of acoustic or electromagnetic energy. However, in many cases the
transmitter is better modeled as a distributed, rather than a discrete source. The
principal mechanism for making the source appear to be distributed in space is dif-
fuse (unresolvable) and specular (resolvable) multipath caused by scattering of the
propagating waves. Another is transmitter motion.

The goal of this project was to develop array processing techniques for distributed
sources. The vector of the signals received by an array from a distributed source
resides in a Grassmanian manifold (or a subspace manifold). This is the natural ex-
tension of the array manifold used in the case of point sources, which can be considered
to be a special (rank one) case of a subspace manifold. In other words, whereas the
response of an array to discrete sources is characterized by what is commonly called
the array manifold, its response to a distributed source is characterized by a subspace
manifold.

The main emphasis of the project was on solving signal estimation and detection
problems in an environment containing both discrete and distributed sources, where
some of the sources are the signals of interest and others act as interference. We are
especially interested in applications involving passive sonar systems which attempt
to detect weak targets in the presence of strong possibly rapidly moving sources of
interference.

The main objective of this research effort was to develop a more complete under-
standing of array processing for distributed sources, and to apply what we learn to
various problems of interest in sonar and communication systems. More specifically,
the objectives were to develop the theoretical framework of the subspace manifold
within which array processing for distributed sources can be properly addressed, to
develop algorithms for optimal signal estimation and detection for distributed sources,
and to evaluate the performance of the candidate algorithms in the context of specific
acoustic surveillance and communication scenarios.

2 Technical Approach

Our technical approach is based on representing the distributed sources by the sub-
space in which they exist. The signal S received by the array from a single source is as-
sumed to be complex Gaussian with zero mean and covariance R,. Let R, = UDU¥
be the singular value decomposition of the signal covariance matrix and let U, be a
matrix consisting of the first r singular vectors (i.e. the first r columns of U), where
r is chosen so that the sum of the first r singular values is very close to the sum of all
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the singular values. In other words, U, contains most of the signal energy. We will
refer to U, as the signal subspace, and to r as its effective rank. When the angular
spread equals zero (or is very small), » = 1, and we have the conventional case of
a point (discrete) source. For larger angular spreads we have r > 1 and this is the
distributed source case.

Next consider the problem of detecting a signal S in the presence of zero-mean
Gaussian interference-plus-noise with covariance matrix R. Let X denote the vector
of data measured at the array output. The detector needs to decide whether X is a
zero mean Gaussian with covariance R or whether it is a zero mean Gaussian with
covariance R; + R. This basic detection problem can be restated in many variations
differing by what is and is not known to the detector. In practice the interference-
plus-noise covariance R is unknown and needs to be estimated from training data.
The signal covariance is only partially known. We may, for example, assume that
the rank of the subspace is known, but the direction of the signal and its energy are
unknown. These different versions of the problem are of varying degrees of difficulty
and require careful analysis and interpretation.

3 Summary of Work

Using the subspace model for distributed sources that was introduced in the previous
section, we can formulate and attempt to solve a variety of detection and estimation
problems that have been previously addressed for the case of discrete sources.

We have studied the basic problem of detecting a single distributed source in
the presence of white Gaussian noise, focussing on the case of a linear uniformly
spaced arrays. The structure of the “optimal” detector can be interpreted as a bank
of beamformers whose output energies are combined. The beamformer coefficient
vectors span a low rank subspace, whose rank depends on the angular spread of
the signal. We developed the receiver operating characteristics for this subspace
detector under various assumptions on which parameters are known or unknown. In
particular, we made detailed comparisons of the performance of the subspace detector
to the conventional beamformer. This work was summarized in project publications
[1] and [2]. Reference [1] is incorporated as an appendix to this report, to provide a
more detailed description of this work.

Next we considered the case of detecting a distributed source in the presence of
interference. This problem is more involved, partly because it has several variations
depending on the type of information available to the detector. For example, we may
or may not have training data for estimating the interference-plus-noise covariance
matrix. We have studied in some detail the case where training data is available,
and were able to show that the optimum processor is a bank of Minimum Variance
Distortionless Response (MVDR) beamformers, whose output energies are added up
with appropriate weights. More specifically, the weight vector of the MVDR for a



point source is the product of the inverse interference plus noise covariance matrix and
the steering vector in the target direction. For a distributed source we have multiple
MVDRs, each with the same covariance matrix, but different steering vectors. The
steering vectors are selected so as to span the signal subspace Us. The MVDR outputs
are weighted according the the amount of signal energy contained in different parts
of the signal subspace, and then combined. This work is summarized in project
publications [3].

In [4], [5] we studied the problem of detecting distributed sources using sub-arrays
as a means of improving performance when only a limited amount of training data
is available. We developed two types of sub-array detectors, both having a sub-
array level GMVDR as their first processing step. The first detector non-coherently
combines the outputs of the GMVDRs. The second detector optimally combines
these outputs using another GMVDR. We have analyzed the performance of the
two sub-array detectors and were able to show that they offer significantly improved
performance as the number of available data snapshots falls below the number of
elements in the full-size array. As expected, in the case where the covariance matrix
R is known the performance of the sub-array detectors is inferior to that of the full-
size GMVDR, but the difference is quite small. Reference [4] is incorporated as an
appendix to this report, to provide a more detailed description of this work.

In [6], [8] we studied the detection problem for the case where multiple observations
of the signal are available. The detector is derived from the likelihood ratio detector
designed for the case where the covariance R is known. After the test statistic is
derived, the maximum likelihood estimate of the covariance matrix based on the
secondary data is inserted in place of the known covariance. The resulting test statistic
is a CFAR detector. By comparing this detector to a related detector derived for
the case where the signal obeys a First Order Gaussian (FOG) model (where the
signal is assumed to be a fixed but unknown vector), we observe that the derived
CFAR detectors for both models have the same form for either single or multiple
observations. The detector for the FOG model using a single observation has been
shown to be a GLRT detector. This observation suggests that the detector we derived
and the detector for the FOG model may be true GLRT detectors. Reference [8)] is
incorporated as an appendix to this report, to provide a more detailed description of
this work.

4 Impact and Applications

The subspace array manifold provides a natural framework for extending array pro-
cessing from point sources to distributed sources. It has both theoretical and practi-
cal significance. From a theoretical standpoint it provides an approach for extending
much of the work which has been done on signal detection and estimation, interference
cancellation and so on, to the underwater acoustic and communication environments.




This work has direct applications to sonar, radar, and wireless communication
problems. A recent development in radar is the so-called MIMO radar which uti-
lizes diversity techniques to enhance detection performance of radars equipped with
multiple transmit/receive antennas. The problem formulation and results carried out
in this project fit very well this problem. It may be possible to extend the MIMO
radar concept to active sonar arrays. The application to wireless communications was
explored in [9], [10], [11], [12], which uses a signal model and detectors based on the
work described here.
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Abstract

We consider the problem of detecting a spatially dis-
tributed source by an array of sensors. Source parame-
ters such as signal power, direction and angular spread,
as well as the noise power, are unknown to the detec-
tor. Using the generalized likelihood ratio (GLR) ap-
proach we derive the structure of the detector under
different assumptions on which parameters are known
or unknown. The performance of the detetors is eval-
uated and the effect of angular spread is investigated.
It is shown that as angular spread increases, the GLR
detector provides a significant advantages over the con-
ventional beamformer based detector.

1 Introduction

The vast majority of modern array processing tech-
niques are designed for point sources, i.e. spatially dis-
crete sources of acoustic or electromagnetic energy. In
many practical situations the transmitter is best mod-
eled as a distributed, rather than a discrete source. The
principal mechanism for making the source appear to
be distributed in space, is diffuse (unresolvable) and
specular (resolvable) multipath caused by scattering
of the propagating waves. A secondary, but equally
important mechanism, is transmitter motion. If the
source moves significantly during the observation inter-
val (or coherent integration time) it will appear to be
distributed rather than discrete. In this paper we de-
velop detectors for distributed sources, and study their
performance as a function of the angular spread of the
signal.

In section 2 we describe the statistical detection
problem. In section 3 we present several GLR detec-
tors which make different assumptions on what signal
and noise parameters are known or unknown. Section
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4 presents a brief performance analysis, and section 5
summarizes selected numerical examples which provide
insights into the effects of angular spread on the per-
formance of the conventional beamformer and the GLR,
detector.

2 Problem Statement

Assume we have an array with P sensors having an
array response vector a(¢), where ¢ denotes azimuth.
The array and all the sources are assumed to be in the
same plane. We assume a narrowband model for all the
signals, and all the signals are defined in baseband. Ex-
tensions to the broadband case will be described else-
where.

The signal received by the array from a single source
is modeled as

Xt=st+Nta t=1’)T (1)

where X; is the array output at sample time ¢, S; is
the signal received at the array elements, assumed to
be complex Gaussian with zero mean and covariance
R;, and N; is complex Gaussian noise with zero mean
and covariance R,. The signal and noise are assumed
to be independent from sample to sample.

The array is characterized by the array manifold
a(¢), where ¢ is the source azimuth. The signal co-
variance matrix R; is related to the array manifold by

o+8/2
mwm=&44ﬂpﬁwawwﬁw ()

where P(6; ¢) is the spatial energy distribution of the
source at azimuth ¢. More specifically we may assume
that P(6;¢) = P(6 — ¢). The parameter § is the an-
gular spread of the source, —m < 8 < w. The signal is
assumed to have energy F,, and therefore

o—B/2
| Peswe=1 (3)
¢




The signal covariance matrix R;(¢, 3) depends on sig-
nal direction ¢ and angular spread 3. The case where
B = 0° corresponds to a point source. Without loss
of generality, we consider in the following an uniformly
distributed signal model, i.e. P(6;¢) =1/8.

The problem considered in this paper is how to de-
tect the signal, in the presence of noise and interfer-
ence. Let us assume for the moment that the interfer-
ence has known characteristics and is absorbed into the
noise vector IN;. The more realistic case of unknown
interference is more complicated and will be presented
elsewhere.

The detection problem is to decide between the null
hypothesis Hy : X; = N; and Hy : X; = S; + N;.
The covariance matrix of the array output under Hy
is Rp = R, and under H; it is R; = R;(¢,8) + R,,.
Without loss of generality we assume that R,, = o2,
where o2 is the noise variance.

The detector depends on a set of parameters p =
(Es, ¢, 8,0%). When all the parameters are known, this
is a standard detection problem whose optimal solution
is the likelihood ratio detector. When the parameters
are unknown, we will use the generalized likelihood ra-
tio (GLR) approach, involving the replacement of un-
known parameters by their maximum likelihood esti-
mates under each hypothesis. In the following we will
consider the following types of detectors:

e Type I: All parameters are known.

o Type II: Unknown noise power o2.

e Type III: Unknown direction ¢.

e Type IV: Unknown angular spread S.
3 The Detector

Given the assumption that the received signals are
Gaussian with zero mean and covariance Rg and R,
under hypotheses Hy and H; respectively, the proba-
bility density functions (pdf) for the observations are
given by

F(X4; Ho) = [(2m)P/2[Rol! /%] eap{~ s XIRG X} (4)

F(Xes H) = [(2m)2{Ra 7] emp{~ S XFRTXe) (5)

When all the parameters are known the optimal de-
tection statistic is given by the logarithm of the ratio
F(X¢; Hy)/ f(Xy; Ho) of the likelihood functions. This
log-likelihood ratio takes the form

R
LX) =X (R'-R{Y) Xy +1n I_R—ﬂ (6)

Next consider the case where some parameters are un-
known. Denote by py and p; the unknown parameters
under Hy and H; respectively. In this case the de-
tection statistic is given by the generalized likelihood
ratio

_ max,, f(X, Hy)
l(xt) = max:) f(xt,HO) (7)

or its logarithm

LXw.fo.p1) = X{ (Rg'(fo) — Ry (51)) Xe
[Ro(po)l

|R1(51)|

where $; and py are the parameter values which max-
imize the likelihood function under H; and Hy respec-
tively. In the following we will find it convenient to
write this equation as

+In (8)

L(X3,50,01) = XFWWHX, + ;. (B0, 51)  (9)

where
a(po,p1) =In % (10)
and
WWH = Ry1(po) — Ry (51) (11)

where W is a P x P matrix. This leads to an interpre-
tation of the GLR as a bank of beamformers. Let y,
as an output vector of the beamformers, or

Yt = WHXt (12)

We will refer to this as a “subspace beamformer”, to
distinguish it from the conventional beamformer where
W is a P x 1 vector. The detection statistic is given
by

L(X4,po, p1) = llyell® + ce(Bo, 1) (13)

where ||y;||? is the sum of squared magnitudes of the
subspace beamformer outputs.

Next we conside the case of multiple measurements.
Let X = [X;, X, ..., X7] be the measured data. As-
sume that the measurements are mutually indepen-
dent, in which case



T

ZL(xt,ﬁO,ﬁl) (14)

t=1
= trace{WIXXH#W} + a(po, p1)

L(xvﬁmﬁl)

where a(fo, p1) = 31_; o(Po, 1)

Next we consider in more detail the structure of the
different detectors introduced earlier. In all these cases
the GLR statistics are given by equations (9) — (11).

Type I: In this case all the parameters are known
and the subspace beamformer weight matrix is

W = (6721 - (0’1 + Rs(4,0)) )Y (15)

The term a(po, p1) is constant (data independent) and
can be ignored. In this case the detection statistic
L(X,) is a quadratic Gaussian form, and has a weighted
Chi-squared distribution. See section 4.2 for details.
Type II: In this case noise variance o2 is unknown,
and is replaced by 62 under Hy and 67 under H; re-
spectively. It is straightforward to show that

- 1
3= Il (16)

The estimate 67 can be computed by numerical maxi-
mization of the likelihood function. In the case where
R has a low rank approximation.

R, ~ U, U# (17)
where U, is a P x 7 matrix, it can be shown that ([4])
- 1

o = '13__7,”PIJ3rXt”2 (18)

The subspace beamformer weight matrix is given by
W = (11— (021 4+ Ry)-1)1/2 (19)

ot
and o .

ai(02,02) = PInog —In|Ry(63,6%)]  (20)

Type III: In this case the signal direction ¢ is not
known and needs to estimated. Note that the likeli-
hood function under Hy is independent of ¢ and thus
it needs to be estimated only under H;. The estima-
tion is done by numerical maximization over the range
—180° < ¢ < 180° (or —90° < ¢ < 90° for a linear
array).

The subspace beamformer weight matrix is given by

W= (1= T+ RGN ()

and

at(<;31) =In|Ry (¢31)| (22)

Type IV: In this case the angular spread J is un-
known. The estimate (; is computed by numerical
maximization over range 0° < 8 < 360°.

The subspace beamformer weight matrix is given by

W= (%I ~ (0L + Ry(Br))~1)1/? (23)

and
a(B1) = In|R1(5y)| (24)
4 Performance Analysis

4.1 Output SNR vs. angular spread

The subspace beamformer output is
ye = WHIX, = WHS, 4 WHN, (25)

Let us define the output SNR (SNRO) as the average
signal power divided by the average noise power

tr{W¥H E{S,S{}W}

W {WHE{N,NIJW}
The input SNR is SNR, = E;/02. The effective array
gain AG will be defined as AG = SNRO/SNR.

We are interested in studying how the array gain
varies with angular spread. Note that

SNRO =

(26)

{Ra(B)RG-RIVB} _ 4
tr{Ro(Rg 'R (8))}
— trjl{alegﬁz—It -1
tr{I-o?Ry " (8))}
1/0%tr{EsRs+021}—P
P—aztr{(EaR,-zl-ozl)"l} -
E

sP/o -1
P—o?tr{(E;Rs+0%I)-T}

SNRO

(27)

The following can be concluded from this equation:

1. For the point source case Ry = FEsaaf with
af’a = 1. Inserting this into the equation above
we get AG = P.

2. For the case of completely uncorrelated fading
R; = E,I. Inserting this into the equation above
we get AG = 1.

3. If R; has rank r, and all of its nonzero eigenvalues
are equal, then AG = P/r (see [4] for details).

In other words, the array gain is a monotonically de-
creasing function of angular spread, going from a max-
imum value of P to a minimum value of unity.
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Figure 1. Probability of detection vs. SNR for
Type | detector, for 8 = 0°,3°,10°,30°. The
lines depict the analytical results, while the
markers show Monte-Carlo results.

4.2 Receiver Operating Characteristics

Let ppr(z) be the pdf of a central Chi-squared distri-
bution with M degrees of freedom. The log-likelihood
ratio for a type I detector L(X;, H;) = XFWWHX,
is a quadratic form in complex Gaussian random vari-
ables. This can be rewritten as

P
L(Xe, H) = 3 jilesl? (28)
j=1

where z;; are independent zero mean unit variance
Gaussian random variables, and 7;; are the P real
nonzero eigenvaules of the matrix RRWW?# { = 0, 1.
More precisely
Aj Aj
Y0 = )\_,'TJUZ’ Yi1 = 0_—;, (29)
where A; are the eigenvalues of R;.

The pdf of the quadratic form L(Xq, H;) is approx-
imately a scaled Chi-squared random variable. It was
shown in [3] that the scaling factor is 7; = 35 7%/ 3. ¥4,
and the degrees of freedom M; = 2(3°7;i)?/ 2%
In other words L(X:, H;) ~ Tix},, and its pdf is
(1/r)pas(2).,

The probability of false alarm (Pr4) and probability
detection (Pp) are given by

P = / ™ pasa (2)dz (30)
n .

i | — Type | detector
: | -8~ beamformer
Cl= pe Il detector

Roquired SNR (d6)

1
150 250
anguiar spread In degrees

Figure 2. Required SNR vs. angular spread
for Type | and Type Ill detectors and the
beamformer, for P, = 0.8.

and

o0
Pp = / P, (2)dz (31)
2n
1
The pdf of the log-likelihood function of detector types
II - IV do not have closed analytical forms, but can be
evaluated by Monte Carlo simulations.

5 Numerical Examples

In these examples we consider a linear array with
P = 100 sensors uniformly spaced every one-half a
wavelength. The source is at ¢ = 30° with a uniform
energy distribution over the angular spread. The prob-
ability of false alarm is set to Prg = 0.01.

5.1 Type I detector — Receiver Operating
Characteristics

Figure 1 depicts the probability of detection of a
type I detector, for different angular spreads. The fig-
ure shows both the analytical results using the formu-
las presented earlier, and the results of a Monte-Carlo
simulation. As can be seen, there is a very good match
between the two. Note that for high values of Pp the
performance improves as angular spread increases up
to a point, but then it starts decreasing. To see this
more clearly it is convenient to pick just one point on
the Pp vs. SNR curve. We define by SNRD the SNR



i 1 i 1 3
[ 50 100 150 200 250 300 350 400
angular spread In degrees

Figure 3. Array Gain vs. angular spread for
the Type | detector.

required to produce Pp = 0.8. In other words, SNRD
is the SNR value of the points at which the horizontal
line at Pp = 0.8 intersects with the curves.

5.2 Required SNR vs. angular spread

Figure 2 depicts the required SNR vs. angular
spread, for detectors of type I and III, and the beam-
former. It is assumed that the beamfomer searches over
all possible directions and detection is done based on
its largest output. As angular spread increases the re-
quired SNR initially decreases and then increases. De-
tector performance is affected by array gain and the pdf
of the detection statistic. Array gain decreases mono-
tonically with angular spread, while the change in the
pdf improves performance monotonically with angular
spread. The sum of these two effects has the form de-
picted in the figure.

5.3 Array Gain vs. angular spread

Figure 3 depicts the array gain AG vs. angular
spread, for the Type I detector. As mentioned ear-
lier, the type I detector has an array gain of P (20dB
in this case) for 8 = 0, and a gain of unity (0 dB) for
the uncorrelated case.

5.4 Comparison of different detectors

Figure 4 depicts the probability of detection curve
for detector types I - IV, for an angular spread of

Figure 4. Probability of detection vs. SNR for
detectors of types 1, 11, Hll, and IV, for 8 = 10°.

10°. Note that performance is most sensitive to lack of
knowledge of the direction ¢, and least sensitive to not
knowing the noise power o2. However, over all the per-
formance loss due to the unknown parameters is fairly
small.
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Abstract

We introduce a framework for exploring array detection
problems in a reduced dimensional space. This involves
calculating a structured subarray transformation matrix for
the detection of a distributed signal using large aperture lin-
ear arrays for short data records. We study the performance
of the adaptive subarray detector and evaluate its potential
improvement in detection performance compared with the
full array detector with finite samples. One would expect
that processing on subarrays may result in performance loss
in that smaller number of degrees of freedom is utilized, yet
lead to a better estimation accuracy for the interference and
noise covariance matrix with finite data samples, which will
yield some gain in performance. By studying the subar-
ray detector for general linear arrays, we identify this gain
under various scenarios. We show that when the number
of samples is small, the subarray detector has a significant
performance gain over the full array detector. We validate
our results by computer simulations.

1 Introduction, Background and Motivation

The problem of detecting underwater acoustic sources us-
ing measurements by an array of sensors has been stud-
ied extensively in literature. For a large aperture acoustic
array, a narrow beam can be formed so as to distinguish
two closely spaced emitters. However, the acoustic en-
ergy source may be fairly close to the array and may move
through several beams during the sonar system’s temporal
integration time. The effects of source motion on detector
systems have been studied by several authors [2]. One may
model the moving transmitter during an integration time as
a source with energy scattering in space, or called a dis-
tributed source. The distributed source can be modelled by
a subspace array manifold[S5].

One of the enduring problems associated with the adaptive
minimum variance distortionless beamformer (MVDR) lies
in the classic dilemma of wanting long observation times
for stable covariance matrix estimates yet needing short ob-
servation times to track dynamic field behavior. Reduced
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rank processing is one of the well known data processing
methods [4] to deal with this issue. In this case, the data
is mapped into a lower dimensional subspace via a trans-
formation matrix prior to detection. In this paper, we study
the problem of detecting distributed sources using subar-
rays, i.e., a partial collection of sensors of a full array, from
the standpoint of the general reduced rank detection theory.
In this case, the transformation matrix is a structured block
diagonal matrix.

The motivation for this study lies in the following two
observations. Firstly, a subarray with a smaller aperture
gives rise to a wider beam which is able to cover the an-
gular spread of the distributed sources if the subarray size is
chosen properly. Secondly, the subarray processing offers a
tradeoff: a better statistical accuracy of the estimate at the
cost of reduced number of degrees of freedom. Hence sub-
stantial performance improvements are possible using the
subarray detector in limited-data situations.

It should be noted that the idea of subarray processing has
been proposed before, and has been studied by several au-
thors, for instance, Cox [3], Morgan [6], and Owsley. Our
work aims to derive the optimal subarray detector and its
variations for distributed sources with short data record. In
addition, our work is close in spirit to the well studied par-
tially adaptive beamforming (see e.g. Van Veen [7] and the
reference therein), where the number of adaptive degrees
of freedom may be considerably fewer than the number of
sensors, while still providing useful performance. Reduc-
ing the number of adaptive degrees of freedom degrades
the interference cancellation performance. Thus minimiz-
ing the detection performance degradation is an important
consideration in designing the optimal subarray detector for
detecting signal sources with energy scattering.

2 Problem Formulation

2.1 Array signal model

We consider a general linear array composed of P sensors.
Let {ym,m = 1,---, P} be the coordinates of the m-th
sensor measured in half wave-length units and a(¢) be the
steering vector of the array in the direction ¢:

a(¢) — [ej-/ry1sin¢, e, ejwypsinqS]T (l)



Let p narrow-band plane waves impinge on the array from
distinct direction {¢1, @2, -+, ¢p}. For simplicity we as-
sume that the sources and the sensors are coplanar. We de-
note the samples of the receiver outputs by z;;, where 1 is
the sensor number and ¢ is the sample index (different sam-
ples at different ¢ are assumed to be independent). Hence
the signal received by the array is modelled as follows,

X(t) =a (t)sl(t) + i 5‘f'l,(t)sﬂ(t) +n(t)! t= ]-a B K

n=2
@
where x(t) is array output at sample time ¢, x(t) =
[Zt1,+++,2ep]T. 8n(t) is the n-th complex waveforms con-

stituting the signal with total signal power E{|s,,(2)?|}. We
assume that the instantaneous array response &, (t) is a com-
plex Gaussian vector with zero mean and covariance ma-
trix R,. This covariance matrix is related to the subspace
array manifold A via an eigenvalue decomposition, i.e.,
R, ~ U,X, U = AA¥ (see [5] for details), where r is
the rank of the signal subspace. n(t) is the complex Gaus-
sian noise with zero mean and covariance ¢2I, and is un-
correlated with the signal sources. We assume that the first
signal s;(t) is the desired signal with E, = E{|s; ()%},
others are the interfering signals.

2.2 A reduced rank detection problem

A commonly used detection scheme is the binary hypoth-
esis testing, that is, letting the null hypothesis be that the
data is signal free and the alternative hypothesis be that the
data contains a signal. Hence the detection problem on the
basis of the full array data vector x (we drop ¢ for simplicity
purpose) is given as follows,

Hp: x ~CN(O,R) 3)
H: x ~CN(0,E;R; +R)

The optimal full array detector W ¢ for the above detection
problem is given as [5]

W; =RV @

where V. = E,A(E;APR7'A + 1,)"'/2 is the
weighted signal subspace matrix, while the matrix
(E;,AfR~'A +1,)~1/2 is a diagonal dominant matrix and
represents how the columns (or beams) of signal subspace
A are weighted and combined. We call this matrix beam-
former W a Generalized MVDR (GMVDR) beamformer
in the sense that it extends the standard rank one MVDR
beamformer w; = aR~'a(4) to a multi-rank case.

The implementation of the full array detector requires a
priori knowledge of R, which is often estimated from fi-
nite training samples. The requirement for large number
of data samples can be difficult or even impossible to meet

in rapidly changing environments, especially for large aper-
ture arrays. Thus we formulate a subarray detection prob-
lem within the framework of the general reduced rank de-
tection theory described as follows. Let matrix T € CP*L

Figure 1. The reduced rank processing. T is
a transformation matrix, C is a detector

be a linear transformation matrix, and matrix C € CL*" be
a detector based upon transformed data

z=THx )

The detection problem is then described by the following’
binary hypothesis test

Hp: z ~ CN'(0, THRT) ©
H; : z ~CN(0,E,THR,T + THRT)

The optimal detector for the above detection problem (6) is
given as follows,

1
C = (T"RT) ™' T" A(z-T+A T(T"RT) ' T” A)~?
8
(M
Hence, the overall detector for this reduced rank processing
architecture shown in Fig. 1 is given as

W = TC = T(THRT)"'V, ®)

where the reduced rank signal subspace matrix V, =
VE,THA(I + E,APT(THRT)-'THA)~1/2, which
leads to the following test statistics

L(x) = xHWWHx = |WHx|? )

The performance of the detector W depends on the choice
of T. This matrix T compresses P-dimensional data into a
L-dimensional subspace prior to constructing a test statis-
tic. This transformation reduces the nuisance parameter
into THR,T. This reduction in the number of nuisance
parameters tends to improve the accuracy of the estimate
THR,T. Intuitively, T removes the dimensions that con-
tain least “’signal-to-interference-plus-noise” components.
A desirable T should suppress strong interference compo-
nents while match to the signal. Next, we derive a lin-
ear transformation matrix T where T has a block-diagonal
structure.

3 The Subarray Detector For A General Lin-
ear Array

When we say subarray processing we mean that we di-
vide the full array into many smaller arrays, or called sub-



array, and process the received data from each subarray in-
dividually. Consider a general linear array of P sensors, a
common scheme is dividing the total array into a number
of non-overlapping subarrays with equal size. Each subar-
ray has M sensors. Without loss of generality, let us as-
sume that P = N M where N is the number of subarrays
with sensors {1, - - -, M} forming the first subarray, sensors
{M +1,---,2M} forming the second subarray, etc. The
full P-element input vector is given by equation (2). The
M-element input data vector for the n-th subarray, which
shall be denoted by x,,, is expressed as follows,

T N
Xn = [m(n—l)M+17$(n—1)M+‘27 ter 1an] y = 1) : "1N

(10)
Given the above subarray configuration, we constrain our
processing matrix T to be a block diagonal matrix, i.e.,

T=dia‘g[T1""1TN] (1D
where M X r, matrix T,, is the optimal subarray detector
of n-th subarray, and L = EQ’:I Tn.

3.1 The n—th subarray beamformer T,

It is straightforward to show that, the optimal subarray
beamformer for the n-th subarray is the GMVDR beam-
former based on subarray data vector x,,. Hence, the M xr,,
matrix T, is given as follows,

Tn = R:IAMAPRI'A, + —D)F =RV, (12)

where V,, = Ap(AFR;TA, + £ D)%, Ry, is the n-th
diagonal block of R, and A,, € CM*= is the n-th subarray
manifold.

3.2 The coherent subarray detector

Plugging equation (11) and (12) into equation (8), we ob-
tain the coherent subarray detector as follows

Weon =TC (13)

3.3 The noncoherent subarray detector

For the noncoherent detector, the outputs of each subarray
after the pre-processing matrix T are squared and summed
regardless of the coherence of the signal along each subar-
ray. This detector is given by

Wno'n =T (14)

4 Performance Analysis

In this section, we quantify the performance of the subar-
ray detector analytically. It is clear that the derived coherent
subarray detector is a cascade of GMVDR beamformers,
i.e., the beamformer T,, at each subarray, and a combiner
C. There are three basic issues that need to be understood.

One is the interference cancellation through two stages of
subarray processing. Smaller number of degrees of freedom
is used at the subarray level to cancel out the interference,
which causes performance loss, the second stage will gain
back some of the loss by combining the outputs from the
first stage. The second issue is the potential gain of the sub-
array processing compared with the full array processing
with finite sample size due to a better statistical stability of
the interference estimation. The third issue is the effect of
signal source angular spread. We use a uniform linear array
as an example.

4.1 Interference cancellation of coherent
and noncoherent subarray detector

The r,, x r, matrix TR, T,, represents the covariance
matrix of the interference plus noise at the output of n-th
subarray detector T',.

THR,T, 1- (B,AHR;IA, +1)7!

. - 15
Undlag[%ﬁ’ Ty &—'ﬁ:]U# (15)

o

where E;AHFR;1A, = U,IL,U¥ via an eigen-
decomposition and T',, is the eigen-value matrix which rep-
resents the signal to noise ratio distributed in the signal
subspace, and F?-T represents the residue interference plus
noise appears at ¢-th beam at the output of T',,. Furthermore,
the general covariance matrix at the output of first stage pro-
cessing matrix T is given by a block matrix THRT with
THR,,,n Ty, being its (m,n)-th block, which indicates the
cross-correlation of the interference plus noise outputs of
beamformer T,,, and T,,.

It is often said that a beamformer requires one adaptive de-
gree of freedom per point interferer to achieve interference
cancellation. We extend the point sources to the distributed
sources, and study the interference cancellation of the co-
herent and noncoherent subarray detectors for the following
two cases: (a). M > g and (b). M < q, where M is the
subarray size and q is the rank of interference subspace.

If M > g, ie., the available number of degrees of free-
dom at the subarray level is greater than the interference
subspace rank, the equation (15) becomes

THR, T, ~ diagloi,1, -, 0r, v, ] (16)

The above equation indicates that the beam noise outputs
of T, are uncorrelated. The same argument goes to the
THRT where

THRT ~ diagloi,1,- -, 01,1] 17)

To quantify the interference cancellation through different
stages of subarray processing, we calculate the deflection,
i.e., change in mean divided by standard deviation:

tr[WHR, W]

VE[(WHIRW)?]

DEFLw = E; (18)



Therefore utilizing (16) and (17), we obtain

DEFLy
DEFLy. ~ vN (19)

The gain for the coherent subarray detector is rather com-
plicated. Instead, we calculate the bounds of the gain. The
gain function is given as follows (see [5] for details),

~ _DEFLw.,
< CO.
N< Ser.. <V (20)

The maximal gain of the coherent subarray detector is ob-
tained when the signal source is a point source. In this case,
the detector C is essentially a conventional beamformer
which combines N beam outputs coherently and yields a
gain of N (see also [3]). The lower bound of the gain func-
tion is certainly due to the fact that the coherent subarray de-
tector has a better gain than the noncoherent subarray detec-

. . DEFLw, .
tor. Notice that the relative loss WF[X—L is lower bounded

by v/'N. Equation (19) and (20) indicate that the second
stage processing yields a constant gain that compensates the
loss occurred at the first stage of processing. Consequently,
we will also see by computer simulations that the overall
performance loss of the subarray detector is insignificant
compared with that of the full array detector.

When M < g, the number of adaptive degrees of freedom
is smaller than the rank of the interference subspace, the
performance loss due to incomplete cancellation of the in-
terference may be significant. Generally the matrix THRT
is a diagonal dominant matrix due to weak cross-correlation
between different T,, beam outputs of residue interference.
Hence, Eqn. (19) and (20) still hold. However, when M
becomes extremely small, DEFL~y_ tends to the average
element deflection, which indicates a severe loss of inter-
ference cancellation capability.

4.2 Effect of signal angular spread

In this subsection, we use the output SINR, which is given

H
as SINR = E‘Ttr’[’wvz;r%’—vv]ﬂ, as our performance measure. It
is assumed that the subarray size is chosentobe M > ¢q. We
notice that the SINR gain of T, defined as output SINR vs.
average element SINR, is given as

SINRG ~ M 21

Tn

where r,, is the effective rank of subarray signal subspace,
or equivalently, the number of main beams. This result is
consistent with the SINR gain for the full array detector
reported in [5]. Eqn. (21) suggests that the SINR gain
is the array gain of the subarray normalized by the num-
ber of main beams. It shows that, SINR-wise, using subar-
rays (T,,) with appropriate size so that a single wide beam

(r, = 1) is generated to obtain its array gain has little dif-
ference than using a full array with multiple narrow beams
(r > 1). However, the advantage of using subarrays is ev-
ident when finite sample size is used because of the better
estimation accuracy. :

4.3 SINR gain with finite samples K

In this subsection we will examine the effect of the re-
duced rank processing with finite samples by comparing the
performance between the coherent subarray detector and the
full array detector. We consider the case where the training
data include the signal component. For simplicity, we as-
sume that the signal source is a point source, Hence, for the
full array detector, by citing the results from Mati, we have

: E,
[afR-1a]-! + E2LE,

SINRfuu ] (22)
Without too much difficulty and assuming that T is a rela-
tively constant matrix independent of particular set of data,
we have the following SINR for the coherent subarray de-
tector

E,
[aHT(THRT)-1THa]-! + L1 E,

SINRsus ~ (23)

Thus the SINR gain factor pg in this case is defined as

SINR, .5 (K)
SINR w1 (K)

[2"R7'a]" '+ E21E,
[aF T(THRT)-1THa]-14+ L1 E,
afT(THRT)"THa 1+afR™1aBe(Pl)

afR-1a 1+aH T(THRT)-1THaFE, 471

(24)

We notice that the left term of the Iast line of Eqn. (24) rep-
resents the asymptotic overall performance loss of coher-
ent subarray processing relative to the full array processing,
while the right terms stands for the performance gain of co-
herent subarray processing due to finite sample size effect.

The two opposite factors decide the overall performance.

P =

5 Monte Carlo Simulations

In this section we evaluate the performance of subarray
detectors described above, using Monte Carlo simulations.
The simulation is based upon a general linear array with
P = 40 sensors. Fig. 2 depicts the SINR and deflection
along two stages of subarray processing with different sub-
array size. When M > 8, the detector T shows little per-
formance loss in deflection. When M < 8, the drop-off
gets larger due to partial cancellation of interference, even
the second stage processing will not gain back the loss. Fig.
3 shows that the SINR of the coherent subarray detector
is very close to that of the full array detector as M > g.
Also the deflection gain of coherent subarray detector rela-
tive to T, is bounded by 7 dB (N = 5) and 3.5 dB. While



the deflection gain of the noncoherent subarray detector re-
mains at 3.5 dB. The comparison of performance with finite
samples is also depicted in Figure 4 and 5. Examination
of these figures shows a significant detection improvement
with short data record via subarray processing.
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Figure 2. SINR and deflection of subarray and
full array processing vs. subarray size. Sig-
nal angular spread £,,, = 4 BW, 8;,; = 8
BW. The array is a ULA, the SNR = -4 dB,
SIR = —-30 dB. The interference rank is ¢ = 8.
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Figure 3. Comparison of SINR and deflection
of subarray and full array processing as the
angular spread changes. The array is a ULA,
the SNR = —-4dB, SIR = —-30dB. M = 8.
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Abstract

We consider the problem of detecting distributed signals
described by the second order Gaussian models in the pres-
ence of noise whose covariance structure and level are both
unknown. Such a detection problem is often called the
“Gauss-Gauss” problem in that both the signal and the
noise are assumed to have Gaussian distributions. We de-
rive an adaptive detector for the Second Order Gaussian
(SOG) model signals based on multiple observations. The
detector is derived in a manner similar to that of the gen-
eralized likelihood ratio test (GLRT), but the unknown co-
variance structure is replaced by sample covariance matrix
based on training data. The proposed detector is a constant
false alarm rate (CFAR) detector. We give an approximate
closed form of the probability of detection and false alarm,
and compute performance curves.

1 Introduction

Detecting the signals, either deterministic or random, in
the presence of interference or noise is a common prob-
lem in multi-dimensional signal processing. In array pro-
cessing, the problem under study concerns the extraction of
information from measurements using an array of sensors.
Given the observations of the sensor outputs, the objective
is to estimate the unknown parameters associated with the
wavefronts and to decide whether the measurements con-
sist of noise only (the null hypothesis) or of a number of
sources corrupted by noise (the alternative hypothesis). For
a large class of detection problems, the signal of interest is
modelled as Second Order Gaussian (SOG) model, that is,
each observation of the signal waveform s can be modelled
as some linear combination of p basis vectors or “modes”
where p is the subspace rank. The signal s obeys the linear
subspace model s = Ab, and b has a Gaussian distribution.
Such a problem is usually called the “Gauss-Gauss” prob-
lem in that both the signal and the noise are assumed to have
Gaussian distributions. One example of this type of model
is the passive sonar application in which the signal of inter-
est is the acoustic source generated by, for instance, ships
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or submarines. The acoustic signal is random in nature and
is spread in space [4].

We study in this paper the problem of adaptive detect-
ing a distributed signal based upon multiple observations.
The detector is derived based upon the GLRT assuming
the covariance is known. After the test statistic is derived,
the maximum likelihood estimate of the covariance ma-
trix based on the secondary data is inserted in place of the
known covariance. The resulting test statistic is a CFAR
detector.

Detection of signals on the basis of multiple observations
is of interest in many applications, such as adaptive radar
[2]. In general, the detector based on multiple observations
is not a straightforward extension of that based on a single
observation. The proposed CFAR adaptive detectors for the
SOG model signals based upon multiple observations, to
best of our knowledge, appear to be new.

One important piece of work in this paper is that, for the
SOG model, we are able to derive a closed form expres-
sion of the approximate distribution function of the detec-
tion statistic for the false alarm rate (Pg 4) and the detection
probability (Pp). The form of approximation, verified by
Monte Carlo simulation, appears to have quite good accu-
racy. This approximate closed form simplifies the computa-
tion of the detection threshold. In addition, the closed form
reveals that the test statistic derived for the second order
Gaussian has a central F'— distribution.

By comparing the detectors for the SOG model and the
First Order Gaussian (FOG) model of which the b is a deter-
ministic unknown vector, we observe that the derived CFAR
detectors for both models have the same form under either
single or multiple observations. In fact, the detection prob-
lem for the FOG model on the basis of a single observation
is proven to be a GLRT detector (see Kraut [6]). This obser-
vation suggests that the derived adaptive detectors for SOG
model and FOG model may be the true GLRT detector al-
though have not been proven mathematically. Our results
extend the results on non-adaptive matched subspace detec-
tors (see e.g. [8]) to adaptive subspace detectors and expand
the range of applications of adaptive subspace detectors for
the FOG model to that for the SOG model.



2 Problem Formulation

Let {xx} € CP be a sequence of statistically indepen-
dent, stationary, complex Gaussian distributed sensor data
vectors for k € {1,---, K'}. In an array processing applica-
tion, x;, typically represents a snapshot (sample of the sen-
sor outputs at time k) collected from an array of P sensors,
and it is assumed that {x; } is the superposition of the signal
of interest and the noise. We define the random data matrix
X = [x1,X2,--+,%Xk] € CP*K as a concatenation of all
available data. We consider the data {x;} as the primary
data for detection.

The general signal model we consider in this paper is

xp = Abg + dg ECP 1

where A € CP*P is the known signal subspace depend-
ing on source direction ¢. by € CP is distributed as
N(0,Rpp). Rpp is positive definite matrix of dimension
p % p. In other words, the signal covariance matrix is given
as

R, = ARppAY @
For the distributed signals, R, is described by signal angu-
lar spread /3, nominal direction of arrival ¢ and the spatial
energy distribution P(¢, 8) (see [3]),

T

R(6,0)= [ P6:6,00000)"®  ®
T

d; is the noise data vector and is distributed as dy ~

N(0,aR), where o denotes the noise level.

The CFAR requirement of a candidate algorithm ensures
that the false alarm rate may be prescribed at a given value
independent of the correlation properties between the vari-
ous noise components. In the adaptive detection literature
(see, e.g.,[10]), “CFAR” is with respect to the noise covari-
ance matrix R, assumed to be uniform over test and training
data. However, if we allow the noise level to vary between
training and test data with covariance matrix R and R, re-
spectively, we then mean “CFAR” with respect to both the
shared noise covariance matrix structure R and independent
scaling « of the noise in the test data. This generalizes the
meaning of “CFAR” in both the nonadaptive and adaptive
detection literature, where “CFAR” is respect to a shared
covariance matrix or presumed gain factor between test data
and training data, respectively [7].

Our goal is to determine the existence of a signal in the
received data matrix X. Posing the problem as a hypothesis
test, we let the null hypothesis be that the data is signal free
and the alternative hypothesis be that the data contains a
signal. We also assume that one has access to secondary
data, or the “signal free” data {y,,,m» = 1,--- , M|ym ~
N(0,R)}. Hence, the SOG detection problem we consider
in the paper can be formulated as

{ x; ~N(0,aR), k=1,---,K

Ho: Ym~NOR), m=1,-,M @

and

o0 xr ~N(@O,R; +aR), k
v ym"’N(OaR)’ m

Notice that o is the scale factor accounting for the power
mismatch between the primary and secondary data. The
arbitrary scaling between the test data and training data is of
significant in practical situation. o = 1 can be considered
as an idealized condition. In fact, we hope that the false
alarm rate is insensitive to a when it deviates from unity [6].
The number of primary data vectors K could be arbitrary,
we are interested in the case of single observation detection
(K = 1) and multiple observation detection (K > 1).

3 Adaptive Subspace Detector for SOG
model with K observations

According to the Neyman-Pearson criterion, the optimum
solution to the above hypothesis testing problem (4) and (5)
is the likelihood ratio test. However, for the case under con-
sideration, it cannot be employed since the total ignorance
of the parameters

Ra Rbba (¢ 6)

is assumed. A possible way to cope with the aforemen-
tioned a priori uncertainty is to resort to the GLRT, which
is tantamount to replacing the unknown parameters by their
maximum likelihood estimates under each hypothesis. In
other words, the GLRT is to be derived from

ma‘x(R,Rbb,Q) fl (xi Y)
max(R,a) fo (X, Y)

where fo 1(X,Y) is the joint densities under Hp and Hj.

Unfortunately, it has been well known that when both the
interference and signal covariance are unknown, the GLRT
detector is intractable (see e.g.[1],[9]). In order to circum-
vent this drawback we resort to an ad hoc two-step de-
sign procedure: first we derive the GLRT detector assuming
the covariance is known. After the test statistic is derived,
the maximum likelihood estimate of the covariance matrix
based upon the secondary data is inserted in place of the
known covariance matrix. The resulting detector has the
desirable CFAR property.

3.1 Derivation of CFAR Adaptive Detec-
tor

Before we proceed, we define a pre-whitening filter R %,
where R!/2R1/2 is the Cholesky factorization of R. Then
the pre-whitened measurement z is given as follows,

z=R¥x ®)

where the disturbance becomes white noise R=3d ~
N(0,al). In reality, we will replace this filter by its es-
timate from the training data, by means of either maxi-
mum likelihood estimate or some forms of reduced rank

L(X,Y) =

)




processing. Let us define several notations before we be-
gin the derivation of the GLRT detector. We use the nota-
tion R, = R~1/2R,R~1/2 to represent the whitened sig-
nal covariance matrix. Thus the detection problem can be
formulated as the following simple hypothesis test,

Hy: zi ~ N(0,al)

H;: 7 ~ N(O,R, + ol) ©)

The proposed CFAR subspace detectors are summarized
in Table 1. With K = 1 single data snapshot, the GLRT is
given as (see Appendix I.B in [4] for details)

_ ZHPHZ
T gHPpL
z"Pyz

L() (10)

where H = R-3A, Py is the projection operator on the
subspace H while Pi; = I — Py is its nulling projector.
This detector is also called generalized energy detector in
that the detection statistic is basically the ratio of signal
power projected onto the signal subspace to the noise power
projected onto its null space. Taking into account the pre-
whitening filter, we obtain the following test

HR-} -1
x“R PR_%AR X

x) = xHR-z(I- P JR-%x

03]

R-3A

With K > 1 data snapshots, the proposed CFAR detector
is given as below (see Appendix 1.C in [4]),

ZZEPHZ];
L(Z) =& 5%—— 12
( ) szPll{zk ( )
Or taking into account the pre-whitening filter
xFR-iP__, R-ix
L0 = oot B Pt Ry
LxgRTE(I-P 4 JR72x;

It should be noted that this is not a GLRT detector in a strict
sense. In fact, the GLRT when K > p is given by (see
Appendix LA in [4])

(tr[Rz])P

L(Z)= ———%/ _ 1R, |! 14
@)= wpimpr 9
where R, = 25:1 ZL;Q’

R. = (HPH) :H¥R,H(H”H)"%. Whenp = 1, it
is easy to see that the detector (12) and (14) are equiva-
lent. However, the proposed CFAR detector (12) gener-
ally outperforms the GLRT (14). In fact, it can be shown
that the proposed CFAR detector can be obtained through a
maximization based on a loosened condition (see Appendix
1.C in [4]). We also see that for the SOG signal of rank p,
the GLRT detectors take different forms with different K.

This is because the detection statistic shall depend on sig-
nal power distribution along each dimension for the SOG
model. When there are K > p data snapshots, the total
signal power can be resolved onto each dimension of the
signal subspace, and the signal-to-noise powers along each
dimension of the signal subspace are accounted for. With
only K = 1 data snapshot and without a priori knowledge
of Ry, resolving signal onto each dimension of the signal
subspace is intractable, hence only the total signal power
projected onto the whole signal subspace is accounted for.

Table 1. CFAR Subspace Detectors for SOG
model

| R is known | R is unknown
H Hp .
K=1 L(z):ﬁ-:- L(z):},ﬁg-:;
Eq.(10), (GLRT) (GLRT)
] H
_ z) Puz; _ L Pﬂz
K>1| L@)= %W L(Z) = e
Eq. (12)
_ (lReDPIR|T _ GrlReDPIR|
K>p L(Z) = (tr[PHR,])P-P L(Z) - (tr[PﬂR,])P-P
Eq. (14), (GLRT)

If the noise covariance matrix were known, then we would
use the detector described by (11) and (13). In general, the
covariance matrix is unknown and must be estimated by us-
ing adaptive techniques. In this paper, we use an ad hoc pro-
cedure by substituting the unknown covariance matrix with
its maximum likelihood estimate based on the secondary
data. The resulting detector when K = 1 is given as fol-
lows,

xHS“%PS_éAS“%x

xHS-3(I1-P__; )S-ix

L(x,Y) = (15)

s-%a

where S is the maximum likelihood estimate of the noise
covariance matrix from the secondary data, i.e.,

1 M
— H
8= 37 2 Yn¥ 16)

and B = §~1A, R, = (BFE)- AR, AATA)-1.
Similarly, when K > 1, the corresponding detector is given
as follows,

Ex}:’S‘%PS_%AS‘%xk
TxfIS 3HI-Py,)S ix,

L(X,Y) = 7

So far, we have not specified the structure of the covari-
ance matrix R. Certainly, if R is a structured covariance
matrix, for instance, R = R; + 021, where R; is a low rank



matrix of rank ¢, we then would use ML estimate which in-
corporates the structure of R.. (see e.g [5]). However, the
estimation of R when R has a particular structure is out of
the scope of this paper. Equivalently, the CFAR detector
(15) can also be written as

,{'IS_I/2PS—1/2AS_]/2X/€

L(X,Y) = 22X (18)

due to the fact that L'(X,Y) is a monotonic function of
equation (15). or

, xHS-1A(AHS-1A)-1AHg-1x
L (X,Y) - Zk k ( e ) k
YR X STIxg

(19)
As a special case where a single observation is used, we
have

HS-1A(AHS-1A)-1AHS!
1xy) = 2 AA 2 SRey)

We recognize immediately that this detector has the same
form as the GLRT CFAR adaptive subspace detector for the
FOG model[6].

3.2 Decision Thresholds

A closed form of the test’s probability of false alarm and
detection is usually difficult to obtain. However, we find
that when the signal subspace A is known, a approximate
closed form of the Pr4 and Pp is achievable (see [4] for
details). This approximate closed form reveals an insight
as how the designed detector differs from the one designed
for the first order Gaussian model although the two bear the
same structure, that is, the test statistic for the second order
Gaussian model has a central F'— distribution while the test
statistic for the first order Gaussian model when K = 1 has
a non-central F'— distribution [11]. We write F(ps, a,) to
denote the central F-distribution with degrees of freedom
of (M, Ms), the detection statistics under Hy and H; are
given as

L(X; Ho) ~ 5 % Faxparip-p) @D

g1hy
X ~ 22
L(X; Hy) 92h2 X F(h;,hz) (22)

where hq, g1, ho, go are dependent of eigenvalues of R and
A (see [4] for details). Equation (21) is a function of the sig-
nal subspace rank (p), the total dimension (P) and the num-
ber of observations (K). It is independent of noise structure
(R) and level (o). This clearly indicates that the proposed
detector (10) and (12) are constant false alarm rate (CFAR)
detectors.

3.3 Performance Results

In this section, the computer simulation is conducted to
verified the analytical result presented in the previous sub-
section. The detectors to be studied are given in Eqn.(10)
and Eqn. (12). We choose a uniform linear array with P =
30 sensors. We consider the detector performance when
the number of training samples is sufficient. The choice
M = 2P is made since this condition provides a reasonable
accuracy for estimation of the covariance matrix of noise R.
We will study the performance of the detector with K = 1
and K = 20 snapshots respectively, which represents the
cases of single snapshot and multiple snapshots detection.
The rank of signal subspace depends on the angular spread
implicitly. Its effective rank can be calculated by counting
the dominant eigenvalues of the signal covariance matrix
R;. _

In Fig. 1 - 3, the detection performance vs. the SNR
value for different dimension of signal subspace is depicted.
It is assumed that the signal angular spread or the signal
subspace is known completely. We calculate the detection
probability under K = 1 and K = 20 snapshots for false
alarmrate of Pp4 = 1072,1073. In these figures, the sym-
bols denote the Monte Carlo trial results while the lines de-
note the theoretical results. The three trial cases show that
the theoretical results match with the Monte Carlo results
quite well. However, cautions should be taken when us-
ing this approximation if a precise detection probability is
required. Fig. 1 and 2 show that for a single snapshot de-
tection, there is a cross-over point on the receiver operating
characteristic (ROC) curves. It demonstrates that within a
certain SNR range, the increase of the dimension of sub-
space improves the detection performance due to a change
of the shape of probability density function. However, when
multiple snapshots are used for detection as is shown in fig-
ure 3, the increase of the rank of subspace reduces the detec-
tion performance. The results are consistent with the results
reported in {3] and [9].

4 Conclusion

‘We have proposed the adaptive subspace detectors for the
Second Order and the First Order Gaussian models based
upon multiple observations. The proposed tests are CFAR
tests. They are invariant to arbitrary scaling of the train-
ing data and the test data, With multiple observations, the
GLRT test is not optimal in the Neyman-Pearson sense. The
proposed CFAR test has a higher probability of detection
than the GLRT for the test scenarios.
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Figure 2. P, vs. SNR for Gaussian ran-
dom signals confined in subspace A with
p = [1,4,5] dimension. Pps = 0.001, K = L.
The symbols and the lines denote the Monte
Carlo trial results and analytical results re-
spectively.
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Figure 3. Pp vs. SNR for Gaussian ran-
dom signals confined in subspace A with
p = [1,2,5] dimension. Pp4 = 0.01,K = 20.
The symbols and the lines denote the Monte
Carlo trial results and the analytical results
respectively.



